

Flask-Executor

Flask-Executor is a Flask [http://flask.pocoo.org/] extension that makes it easy to work with concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures]
in your application.

Installation

Flask-Executor is available on PyPI and can be installed with pip:

$ pip install flask-executor

Setup

The Executor extension can either be initialized directly:

from flask import Flask
from flask_executor import Executor

app = Flask(__name__)
executor = Executor(app)

Or through the factory method:

executor = Executor()
executor.init_app(app)

Configuration

To specify the type of executor to initialise, set EXECUTOR_TYPE inside your app configuration.
Valid values are 'thread' (default) to initialise a
ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor], or 'process' to initialise a
ProcessPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor]:

app.config['EXECUTOR_TYPE'] = 'thread'

To define the number of worker threads for a ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor] or the
number of worker processes for a ProcessPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor], set
EXECUTOR_MAX_WORKERS in your app configuration. Valid values are any integer or None (default)
to let concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures] pick defaults for you:

app.config['EXECUTOR_MAX_WORKERS'] = 5

If multiple executors are needed, flask_executor.Executor can be initialised with a name
parameter. Named executors will look for configuration variables prefixed with the specified name
value, uppercased:

app.config[‘CUSTOM_EXECUTOR_TYPE’] = ‘thread’
app.config[‘CUSTOM_EXECUTOR_MAX_WORKERS’] = 5
executor = Executor(app, name=’custom’)

Basic Usage

Flask-Executor supports the standard concurrent.futures.Executor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor] methods,
submit() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit] and map() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map]:

def fib(n):
 if n <= 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

@app.route('/run_fib')
def run_fib():
 executor.submit(fib, 5)
 executor.map(fib, range(1, 6))
 return 'OK'

Submitting a task via submit() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit] returns a
flask_executor.FutureProxy object, a subclass of
concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] object from which you can retrieve your job status or result.

Contexts

When calling submit() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit] or map() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map]
Flask-Executor will wrap ThreadPoolExecutor callables with a copy of both the current application
context and current request context. Code that must be run in these contexts or that depends on
information or configuration stored in flask.current_app [https://flask.palletsprojects.com/en/1.1.x/api/#flask.current_app], flask.request or
flask.g [https://flask.palletsprojects.com/en/1.1.x/api/#flask.g] can be submitted to the executor without modification.

Note: due to limitations in Python’s default object serialisation and a lack of shared memory space between subprocesses, contexts cannot be pushed to ProcessPoolExecutor() workers.

Futures

flask_executor.FutureProxy objects look and behave like normal concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]
objects, but allow flask_executor to override certain methods and add additional behaviours.
When submitting a callable to add_done_callback() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback], callables are
wrapped with a copy of both the current application context and current request context.

You may want to preserve access to Futures returned from the executor, so that you can retrieve the
results in a different part of your application. Flask-Executor allows Futures to be stored within
the executor itself and provides methods for querying and returning them in different parts of your
app:

@app.route('/start-task')
def start_task():
 executor.submit_stored('calc_power', pow, 323, 1235)
 return jsonify({'result':'success'})

@app.route('/get-result')
def get_result():
 if not executor.futures.done('calc_power'):
 return jsonify({'status': executor.futures._state('calc_power')})
 future = executor.futures.pop('calc_power')
 return jsonify({'status': done, 'result': future.result()})

Decoration

Flask-Executor lets you decorate methods in the same style as distributed task queues like
Celery [http://www.celeryproject.org/]:

@executor.job
def fib(n):
 if n <= 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

@app.route('/decorate_fib')
def decorate_fib():
 fib.submit(5)
 fib.submit_stored('fibonacci', 5)
 fib.map(range(1, 6))
 return 'OK'

Contents:

	flask_executor
	flask_executor package

Default Callbacks

concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] objects can have callbacks attached by using
add_done_callback() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback]. Flask-Executor lets you specify default
callbacks that will be applied to all new futures created by the executor:

def some_callback(future):
 # do something with future

executor.add_default_done_callback(some_callback)

Callback will be added to the below task automatically
executor.submit(pow, 323, 1235)

Propagate Exceptions

Normally any exceptions thrown by background threads or processes will be swallowed unless explicitly
checked for. To instead surface all exceptions thrown by background tasks, Flask-Executor can add
a special default callback that raises any exceptions thrown by tasks submitted to the executor:

app.config['EXECUTOR_PROPAGATE_EXCEPTIONS'] = True

Indices and tables

	Index

	Module Index

	Search Page

flask_executor

	flask_executor package
	Submodules

	flask_executor.executor module

	flask_executor.futures module

	Module contents

flask_executor package

Submodules

flask_executor.executor module

	
class flask_executor.executor.Executor(app=None, name='')

	Bases: flask_executor.helpers.InstanceProxy, concurrent.futures._base.Executor

An executor interface for concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures] designed for
working with Flask applications.

	Parameters

	
	app – A Flask application instance.

	name – An optional name for the executor. This can be used to
configure multiple executors. Named executors will look for
environment variables prefixed with the name in uppercase,
e.g. CUSTOM_EXECUTOR_TYPE.

	
add_default_done_callback(fn)

	Registers callable to be attached to all newly created futures. When a
callable is submitted to the executor,
concurrent.futures.Future.add_done_callback() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback] is called for every default
callable that has been set.”

	Parameters

	fn – The callable to be added to the list of default done callbacks for new
Futures.

	
init_app(app)

	Initialise application. This will also intialise the configured
executor type:

	concurrent.futures.ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor]

	concurrent.futures.ProcessPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor]

	
job(fn)

	Decorator. Use this to transform functions into ExecutorJob
instances that can submit themselves directly to the executor.

Example:

@executor.job
def fib(n):
 if n <= 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

future = fib.submit(5)
results = fib.map(range(1, 6))

	
map(fn, *iterables, **kwargs)

	Submits the callable, fn, and an iterable of arguments to the
executor and returns the results inside a generator.

See also concurrent.futures.Executor.map() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map].

Callables are wrapped a copy of the current application context and the
current request context. Code that depends on information or
configuration stored in flask.current_app [https://flask.palletsprojects.com/en/1.1.x/api/#flask.current_app],
flask.request or flask.g [https://flask.palletsprojects.com/en/1.1.x/api/#flask.g] can be run without
modification.

Note: Because callables only have access to copies of the application
or request contexts
any changes made to these copies will not be reflected in the original
view. Further, changes in the original app or request context that
occur after the callable is submitted will not be available to the
callable.

	Parameters

	
	fn – The callable to be executed.

	*iterables – An iterable of arguments the callable will apply to.

	**kwargs – A dict of named parameters to pass to the underlying
executor’s map() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map]
method.

	
submit(fn, *args, **kwargs)

	Schedules the callable, fn, to be executed as fn(*args **kwargs)
and returns a FutureProxy object, a
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] subclass representing
the execution of the callable.

See also concurrent.futures.Executor.submit() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit].

Callables are wrapped a copy of the current application context and the
current request context. Code that depends on information or
configuration stored in flask.current_app [https://flask.palletsprojects.com/en/1.1.x/api/#flask.current_app],
flask.request or flask.g [https://flask.palletsprojects.com/en/1.1.x/api/#flask.g] can be run without
modification.

Note: Because callables only have access to copies of the application
or request contexts any changes made to these copies will not be
reflected in the original view. Further, changes in the original app or
request context that occur after the callable is submitted will not be
available to the callable.

Example:

future = executor.submit(pow, 323, 1235)
print(future.result())

	Parameters

	
	fn – The callable to be executed.

	*args – A list of positional parameters used with
the callable.

	**kwargs – A dict of named parameters used with
the callable.

	Return type

	flask_executor.FutureProxy

	
submit_stored(future_key, fn, *args, **kwargs)

	Submits the callable using Executor.submit() and stores the
Future in the executor via a
FutureCollection object available at
Executor.futures. These futures can be retrieved anywhere
inside your application and queried for status or popped from the
collection. Due to memory concerns, the maximum length of the
FutureCollection is limited, and the oldest Futures will be dropped
when the limit is exceeded.

See flask_executor.futures.FutureCollection for more
information on how to query futures in a collection.

Example:

@app.route('/start-task')
def start_task():
 executor.submit_stored('calc_power', pow, 323, 1235)
 return jsonify({'result':'success'})

@app.route('/get-result')
def get_result():
 if not executor.futures.done('calc_power'):
 future_status = executor.futures._state('calc_power')
 return jsonify({'status': future_status})
 future = executor.futures.pop('calc_power')
 return jsonify({'status': done, 'result': future.result()})

	Parameters

	
	future_key – Stores the Future for the submitted task inside the
executor’s futures object with the specified
key.

	fn – The callable to be executed.

	*args – A list of positional parameters used with
the callable.

	**kwargs – A dict of named parameters used with
the callable.

	Return type

	concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]

	
class flask_executor.executor.ExecutorJob(executor, fn)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wraps a function with an executor so to allow the wrapped function to
submit itself directly to the executor.

	
map(*iterables, **kwargs)

	

	
submit(*args, **kwargs)

	

	
submit_stored(future_key, *args, **kwargs)

	

	
flask_executor.executor.copy_current_app_context(fn)

	

	
flask_executor.executor.default_workers(executor_type, major=3, minor=7)

	

	
flask_executor.executor.propagate_exceptions_callback(future)

	

flask_executor.futures module

	
class flask_executor.futures.FutureCollection(max_length=50)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A FutureCollection is an object to store and interact with
concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] objects. It provides access to all
attributes and methods of a Future by proxying attribute calls to the
stored Future object.

To access the methods of a Future from a FutureCollection instance, include
a valid future_key value as the first argument of the method call. To
access attributes, call them as though they were a method with
future_key as the sole argument. If future_key does not exist, the
call will always return None. If future_key does exist but the
referenced Future does not contain the requested attribute an
AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] will be raised.

To prevent memory exhaustion a FutureCollection instance can be bounded by
number of items using the max_length parameter. As a best practice,
Futures should be popped once they are ready for use, with the proxied
attribute form used to determine whether a Future is ready to be used or
discarded.

	Parameters

	max_length – Maximum number of Futures to store. Oldest Futures are

discarded first.

	
add(future_key, future)

	Add a new Future. If max_length limit was defined for the
FutureCollection, old Futures may be dropped to respect this limit.

	Parameters

	
	future_key – Key for the Future to be added.

	future – Future to be added.

	
pop(future_key)

	Return a Future and remove it from the collection. Futures that are
ready to be used should always be popped so they do not continue to
consume memory.

Returns None if the key doesn’t exist.

	Parameters

	future_key – Key for the Future to be returned.

	
class flask_executor.futures.FutureProxy(future, executor)

	Bases: flask_executor.helpers.InstanceProxy, concurrent.futures._base.Future

A FutureProxy is an instance proxy that wraps an instance of
concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]. Since an executor can’t be made to
return a subclassed Future object, this proxy class is used to override
instance behaviours whilst providing an agnostic method of accessing
the original methods and attributes.
:param future: An instance of Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] that

the proxy will provide access to.

	Parameters

	executor – An instance of flask_executor.Executor which
will be used to provide access to Flask context features.

	
add_done_callback(fn)

	Attaches a callable that will be called when the future finishes.

	Args:

	
	fn: A callable that will be called with this future as its only

	argument when the future completes or is cancelled. The callable
will always be called by a thread in the same process in which
it was added. If the future has already completed or been
cancelled then the callable will be called immediately. These
callables are called in the order that they were added.

Module contents

	
class flask_executor.Executor(app=None, name='')

	Bases: flask_executor.helpers.InstanceProxy, concurrent.futures._base.Executor

An executor interface for concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures] designed for
working with Flask applications.

	Parameters

	
	app – A Flask application instance.

	name – An optional name for the executor. This can be used to
configure multiple executors. Named executors will look for
environment variables prefixed with the name in uppercase,
e.g. CUSTOM_EXECUTOR_TYPE.

	
add_default_done_callback(fn)

	Registers callable to be attached to all newly created futures. When a
callable is submitted to the executor,
concurrent.futures.Future.add_done_callback() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback] is called for every default
callable that has been set.”

	Parameters

	fn – The callable to be added to the list of default done callbacks for new
Futures.

	
init_app(app)

	Initialise application. This will also intialise the configured
executor type:

	concurrent.futures.ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor]

	concurrent.futures.ProcessPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor]

	
job(fn)

	Decorator. Use this to transform functions into ExecutorJob
instances that can submit themselves directly to the executor.

Example:

@executor.job
def fib(n):
 if n <= 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

future = fib.submit(5)
results = fib.map(range(1, 6))

	
map(fn, *iterables, **kwargs)

	Submits the callable, fn, and an iterable of arguments to the
executor and returns the results inside a generator.

See also concurrent.futures.Executor.map() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map].

Callables are wrapped a copy of the current application context and the
current request context. Code that depends on information or
configuration stored in flask.current_app [https://flask.palletsprojects.com/en/1.1.x/api/#flask.current_app],
flask.request or flask.g [https://flask.palletsprojects.com/en/1.1.x/api/#flask.g] can be run without
modification.

Note: Because callables only have access to copies of the application
or request contexts
any changes made to these copies will not be reflected in the original
view. Further, changes in the original app or request context that
occur after the callable is submitted will not be available to the
callable.

	Parameters

	
	fn – The callable to be executed.

	*iterables – An iterable of arguments the callable will apply to.

	**kwargs – A dict of named parameters to pass to the underlying
executor’s map() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map]
method.

	
submit(fn, *args, **kwargs)

	Schedules the callable, fn, to be executed as fn(*args **kwargs)
and returns a FutureProxy object, a
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] subclass representing
the execution of the callable.

See also concurrent.futures.Executor.submit() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit].

Callables are wrapped a copy of the current application context and the
current request context. Code that depends on information or
configuration stored in flask.current_app [https://flask.palletsprojects.com/en/1.1.x/api/#flask.current_app],
flask.request or flask.g [https://flask.palletsprojects.com/en/1.1.x/api/#flask.g] can be run without
modification.

Note: Because callables only have access to copies of the application
or request contexts any changes made to these copies will not be
reflected in the original view. Further, changes in the original app or
request context that occur after the callable is submitted will not be
available to the callable.

Example:

future = executor.submit(pow, 323, 1235)
print(future.result())

	Parameters

	
	fn – The callable to be executed.

	*args – A list of positional parameters used with
the callable.

	**kwargs – A dict of named parameters used with
the callable.

	Return type

	flask_executor.FutureProxy

	
submit_stored(future_key, fn, *args, **kwargs)

	Submits the callable using Executor.submit() and stores the
Future in the executor via a
FutureCollection object available at
Executor.futures. These futures can be retrieved anywhere
inside your application and queried for status or popped from the
collection. Due to memory concerns, the maximum length of the
FutureCollection is limited, and the oldest Futures will be dropped
when the limit is exceeded.

See flask_executor.futures.FutureCollection for more
information on how to query futures in a collection.

Example:

@app.route('/start-task')
def start_task():
 executor.submit_stored('calc_power', pow, 323, 1235)
 return jsonify({'result':'success'})

@app.route('/get-result')
def get_result():
 if not executor.futures.done('calc_power'):
 future_status = executor.futures._state('calc_power')
 return jsonify({'status': future_status})
 future = executor.futures.pop('calc_power')
 return jsonify({'status': done, 'result': future.result()})

	Parameters

	
	future_key – Stores the Future for the submitted task inside the
executor’s futures object with the specified
key.

	fn – The callable to be executed.

	*args – A list of positional parameters used with
the callable.

	**kwargs – A dict of named parameters used with
the callable.

	Return type

	concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flask_executor	

 	
 	
 flask_executor.executor	

 	
 	
 flask_executor.futures	

Index

 A
 | C
 | D
 | E
 | F
 | I
 | J
 | M
 | P
 | S

A

 	
 	add() (flask_executor.futures.FutureCollection method)

 	add_default_done_callback() (flask_executor.Executor method)

 	(flask_executor.executor.Executor method)

 	
 	add_done_callback() (flask_executor.futures.FutureProxy method)

C

 	
 	copy_current_app_context() (in module flask_executor.executor)

D

 	
 	default_workers() (in module flask_executor.executor)

E

 	
 	Executor (class in flask_executor)

 	(class in flask_executor.executor)

 	
 	ExecutorJob (class in flask_executor.executor)

F

 	
 	flask_executor (module), [1]

 	flask_executor.executor (module)

 	
 	flask_executor.futures (module)

 	FutureCollection (class in flask_executor.futures)

 	FutureProxy (class in flask_executor.futures)

I

 	
 	init_app() (flask_executor.Executor method)

 	(flask_executor.executor.Executor method)

J

 	
 	job() (flask_executor.Executor method)

 	(flask_executor.executor.Executor method)

M

 	
 	map() (flask_executor.Executor method)

 	(flask_executor.executor.Executor method)

 	(flask_executor.executor.ExecutorJob method)

P

 	
 	pop() (flask_executor.futures.FutureCollection method)

 	
 	propagate_exceptions_callback() (in module flask_executor.executor)

S

 	
 	submit() (flask_executor.Executor method)

 	(flask_executor.executor.Executor method)

 	(flask_executor.executor.ExecutorJob method)

 	
 	submit_stored() (flask_executor.Executor method)

 	(flask_executor.executor.Executor method)

 	(flask_executor.executor.ExecutorJob method)

 nav.xhtml

 Table of Contents

 		
 Flask-Executor

 		
 flask_executor

 		
 flask_executor package

 		
 Submodules

 		
 flask_executor.executor module

 		
 flask_executor.futures module

 		
 Module contents

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

