
Flask-Executor Documentation
Release 0.10.0

Dave Chevell

Aug 19, 2022

Contents:

1 Installation 3

2 Setup 5

3 Configuration 7

4 Basic Usage 9

5 Contexts 11

6 Futures 13

7 Decoration 15
7.1 flask_executor . 15

8 Default Callbacks 23

9 Propagate Exceptions 25

10 Indices and tables 27

Python Module Index 29

Index 31

i

ii

Flask-Executor Documentation, Release 0.10.0

Flask-Executor is a Flask extension that makes it easy to work with concurrent.futures in your application.

Contents: 1

http://flask.pocoo.org/
https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures

Flask-Executor Documentation, Release 0.10.0

2 Contents:

CHAPTER 1

Installation

Flask-Executor is available on PyPI and can be installed with pip:

$ pip install flask-executor

3

Flask-Executor Documentation, Release 0.10.0

4 Chapter 1. Installation

CHAPTER 2

Setup

The Executor extension can either be initialized directly:

from flask import Flask
from flask_executor import Executor

app = Flask(__name__)
executor = Executor(app)

Or through the factory method:

executor = Executor()
executor.init_app(app)

5

Flask-Executor Documentation, Release 0.10.0

6 Chapter 2. Setup

CHAPTER 3

Configuration

To specify the type of executor to initialise, set EXECUTOR_TYPE inside your app configuration. Valid
values are 'thread' (default) to initialise a ThreadPoolExecutor, or 'process' to initialise a
ProcessPoolExecutor:

app.config['EXECUTOR_TYPE'] = 'thread'

To define the number of worker threads for a ThreadPoolExecutor or the number of worker processes for a
ProcessPoolExecutor, set EXECUTOR_MAX_WORKERS in your app configuration. Valid values are any integer
or None (default) to let concurrent.futures pick defaults for you:

app.config['EXECUTOR_MAX_WORKERS'] = 5

If multiple executors are needed, flask_executor.Executor can be initialised with a name parameter. Named
executors will look for configuration variables prefixed with the specified name value, uppercased:

app.config[‘CUSTOM_EXECUTOR_TYPE’] = ‘thread’ app.config[‘CUSTOM_EXECUTOR_MAX_WORKERS’]
= 5 executor = Executor(app, name=’custom’)

7

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures

Flask-Executor Documentation, Release 0.10.0

8 Chapter 3. Configuration

CHAPTER 4

Basic Usage

Flask-Executor supports the standard concurrent.futures.Executor methods, submit() and map():

def fib(n):
if n <= 2:

return 1
else:

return fib(n-1) + fib(n-2)

@app.route('/run_fib')
def run_fib():

executor.submit(fib, 5)
executor.map(fib, range(1, 6))
return 'OK'

Submitting a task via submit() returns a flask_executor.FutureProxy object, a subclass of
concurrent.futures.Future object from which you can retrieve your job status or result.

9

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future

Flask-Executor Documentation, Release 0.10.0

10 Chapter 4. Basic Usage

CHAPTER 5

Contexts

When calling submit() or map() Flask-Executor will wrap ThreadPoolExecutor callables with a copy of both the
current application context and current request context. Code that must be run in these contexts or that depends on
information or configuration stored in flask.current_app, flask.request or flask.g can be submitted
to the executor without modification.

Note: due to limitations in Python’s default object serialisation and a lack of shared memory space between subpro-
cesses, contexts cannot be pushed to ProcessPoolExecutor() workers.

11

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map
https://flask.palletsprojects.com/en/2.2.x/api/#flask.current_app
https://flask.palletsprojects.com/en/2.2.x/api/#flask.g

Flask-Executor Documentation, Release 0.10.0

12 Chapter 5. Contexts

CHAPTER 6

Futures

flask_executor.FutureProxy objects look and behave like normal concurrent.futures.Future ob-
jects, but allow flask_executor to override certain methods and add additional behaviours. When submitting a callable
to add_done_callback(), callables are wrapped with a copy of both the current application context and current
request context.

You may want to preserve access to Futures returned from the executor, so that you can retrieve the results in a different
part of your application. Flask-Executor allows Futures to be stored within the executor itself and provides methods
for querying and returning them in different parts of your app:

@app.route('/start-task')
def start_task():

executor.submit_stored('calc_power', pow, 323, 1235)
return jsonify({'result':'success'})

@app.route('/get-result')
def get_result():

if not executor.futures.done('calc_power'):
return jsonify({'status': executor.futures._state('calc_power')})

future = executor.futures.pop('calc_power')
return jsonify({'status': done, 'result': future.result()})

13

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback

Flask-Executor Documentation, Release 0.10.0

14 Chapter 6. Futures

CHAPTER 7

Decoration

Flask-Executor lets you decorate methods in the same style as distributed task queues when using ‘thread’ executor
type like Celery:

@executor.job
def fib(n):

if n <= 2:
return 1

else:
return fib(n-1) + fib(n-2)

@app.route('/decorate_fib')
def decorate_fib():

fib.submit(5)
fib.submit_stored('fibonacci', 5)
fib.map(range(1, 6))
return 'OK'

7.1 flask_executor

7.1.1 flask_executor package

Submodules

flask_executor.executor module

class flask_executor.executor.Executor(app=None, name=”)
Bases: flask_executor.helpers.InstanceProxy, concurrent.futures._base.
Executor

An executor interface for concurrent.futures designed for working with Flask applications.

Parameters

15

http://www.celeryproject.org/
https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures

Flask-Executor Documentation, Release 0.10.0

• app – A Flask application instance.

• name – An optional name for the executor. This can be used to configure multiple executors.
Named executors will look for environment variables prefixed with the name in uppercase,
e.g. CUSTOM_EXECUTOR_TYPE.

add_default_done_callback(fn)
Registers callable to be attached to all newly created futures. When a callable is submitted to the executor,
concurrent.futures.Future.add_done_callback() is called for every default callable that
has been set.”

Parameters fn – The callable to be added to the list of default done callbacks for new Futures.

init_app(app)
Initialise application. This will also intialise the configured executor type:

• concurrent.futures.ThreadPoolExecutor

• concurrent.futures.ProcessPoolExecutor

job(fn)
Decorator. Use this to transform functions into ExecutorJob instances that can submit themselves directly
to the executor.

Example:

@executor.job
def fib(n):

if n <= 2:
return 1

else:
return fib(n-1) + fib(n-2)

future = fib.submit(5)
results = fib.map(range(1, 6))

map(fn, *iterables, **kwargs)
Submits the callable, fn, and an iterable of arguments to the executor and returns the results inside a
generator.

See also concurrent.futures.Executor.map().

Callables are wrapped a copy of the current application context and the current request context. Code
that depends on information or configuration stored in flask.current_app, flask.request or
flask.g can be run without modification.

Note: Because callables only have access to copies of the application or request contexts any changes made
to these copies will not be reflected in the original view. Further, changes in the original app or request
context that occur after the callable is submitted will not be available to the callable.

Parameters

• fn – The callable to be executed.

• *iterables – An iterable of arguments the callable will apply to.

• **kwargs – A dict of named parameters to pass to the underlying executor’s map()
method.

submit(fn, *args, **kwargs)
Schedules the callable, fn, to be executed as fn(*args **kwargs) and returns a FutureProxy object, a
Future subclass representing the execution of the callable.

16 Chapter 7. Decoration

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map
https://flask.palletsprojects.com/en/2.2.x/api/#flask.current_app
https://flask.palletsprojects.com/en/2.2.x/api/#flask.g
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future

Flask-Executor Documentation, Release 0.10.0

See also concurrent.futures.Executor.submit().

Callables are wrapped a copy of the current application context and the current request context. Code
that depends on information or configuration stored in flask.current_app, flask.request or
flask.g can be run without modification.

Note: Because callables only have access to copies of the application or request contexts any changes made
to these copies will not be reflected in the original view. Further, changes in the original app or request
context that occur after the callable is submitted will not be available to the callable.

Example:

future = executor.submit(pow, 323, 1235)
print(future.result())

Parameters

• fn – The callable to be executed.

• *args – A list of positional parameters used with the callable.

• **kwargs – A dict of named parameters used with the callable.

Return type flask_executor.FutureProxy

submit_stored(future_key, fn, *args, **kwargs)
Submits the callable using Executor.submit() and stores the Future in the executor via a
FutureCollection object available at Executor.futures. These futures can be retrieved any-
where inside your application and queried for status or popped from the collection. Due to memory con-
cerns, the maximum length of the FutureCollection is limited, and the oldest Futures will be dropped when
the limit is exceeded.

See flask_executor.futures.FutureCollection for more information on how to query fu-
tures in a collection.

Example:

@app.route('/start-task')
def start_task():

executor.submit_stored('calc_power', pow, 323, 1235)
return jsonify({'result':'success'})

@app.route('/get-result')
def get_result():

if not executor.futures.done('calc_power'):
future_status = executor.futures._state('calc_power')
return jsonify({'status': future_status})

future = executor.futures.pop('calc_power')
return jsonify({'status': done, 'result': future.result()})

Parameters

• future_key – Stores the Future for the submitted task inside the executor’s futures
object with the specified key.

• fn – The callable to be executed.

• *args – A list of positional parameters used with the callable.

• **kwargs – A dict of named parameters used with the callable.

7.1. flask_executor 17

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit
https://flask.palletsprojects.com/en/2.2.x/api/#flask.current_app
https://flask.palletsprojects.com/en/2.2.x/api/#flask.g

Flask-Executor Documentation, Release 0.10.0

Return type concurrent.futures.Future

class flask_executor.executor.ExecutorJob(executor, fn)
Bases: object

Wraps a function with an executor so to allow the wrapped function to submit itself directly to the executor.

map(*iterables, **kwargs)

submit(*args, **kwargs)

submit_stored(future_key, *args, **kwargs)

flask_executor.executor.get_current_app_context()

flask_executor.executor.propagate_exceptions_callback(future)

flask_executor.executor.push_app_context(fn)

flask_executor.futures module

class flask_executor.futures.FutureCollection(max_length=50)
Bases: object

A FutureCollection is an object to store and interact with concurrent.futures.Future objects. It pro-
vides access to all attributes and methods of a Future by proxying attribute calls to the stored Future object.

To access the methods of a Future from a FutureCollection instance, include a valid future_key value
as the first argument of the method call. To access attributes, call them as though they were a method
with future_key as the sole argument. If future_key does not exist, the call will always return
None. If future_key does exist but the referenced Future does not contain the requested attribute an
AttributeError will be raised.

To prevent memory exhaustion a FutureCollection instance can be bounded by number of items using the
max_length parameter. As a best practice, Futures should be popped once they are ready for use, with
the proxied attribute form used to determine whether a Future is ready to be used or discarded.

Parameters max_length – Maximum number of Futures to store. Oldest Futures are

discarded first.

add(future_key, future)
Add a new Future. If max_length limit was defined for the FutureCollection, old Futures may be
dropped to respect this limit.

Parameters

• future_key – Key for the Future to be added.

• future – Future to be added.

pop(future_key)
Return a Future and remove it from the collection. Futures that are ready to be used should always be
popped so they do not continue to consume memory.

Returns None if the key doesn’t exist.

Parameters future_key – Key for the Future to be returned.

class flask_executor.futures.FutureProxy(future, executor)
Bases: flask_executor.helpers.InstanceProxy, concurrent.futures._base.Future

A FutureProxy is an instance proxy that wraps an instance of concurrent.futures.Future. Since
an executor can’t be made to return a subclassed Future object, this proxy class is used to override instance

18 Chapter 7. Decoration

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future

Flask-Executor Documentation, Release 0.10.0

behaviours whilst providing an agnostic method of accessing the original methods and attributes. :param future:
An instance of Future that

the proxy will provide access to.

Parameters executor – An instance of flask_executor.Executor which will be used to
provide access to Flask context features.

add_done_callback(fn)
Attaches a callable that will be called when the future finishes.

Args:

fn: A callable that will be called with this future as its only argument when the future completes
or is cancelled. The callable will always be called by a thread in the same process in which it
was added. If the future has already completed or been cancelled then the callable will be called
immediately. These callables are called in the order that they were added.

Module contents

class flask_executor.Executor(app=None, name=”)
Bases: flask_executor.helpers.InstanceProxy, concurrent.futures._base.
Executor

An executor interface for concurrent.futures designed for working with Flask applications.

Parameters

• app – A Flask application instance.

• name – An optional name for the executor. This can be used to configure multiple executors.
Named executors will look for environment variables prefixed with the name in uppercase,
e.g. CUSTOM_EXECUTOR_TYPE.

add_default_done_callback(fn)
Registers callable to be attached to all newly created futures. When a callable is submitted to the executor,
concurrent.futures.Future.add_done_callback() is called for every default callable that
has been set.”

Parameters fn – The callable to be added to the list of default done callbacks for new Futures.

init_app(app)
Initialise application. This will also intialise the configured executor type:

• concurrent.futures.ThreadPoolExecutor

• concurrent.futures.ProcessPoolExecutor

job(fn)
Decorator. Use this to transform functions into ExecutorJob instances that can submit themselves directly
to the executor.

Example:

@executor.job
def fib(n):

if n <= 2:
return 1

else:
return fib(n-1) + fib(n-2)

(continues on next page)

7.1. flask_executor 19

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor

Flask-Executor Documentation, Release 0.10.0

(continued from previous page)

future = fib.submit(5)
results = fib.map(range(1, 6))

map(fn, *iterables, **kwargs)
Submits the callable, fn, and an iterable of arguments to the executor and returns the results inside a
generator.

See also concurrent.futures.Executor.map().

Callables are wrapped a copy of the current application context and the current request context. Code
that depends on information or configuration stored in flask.current_app, flask.request or
flask.g can be run without modification.

Note: Because callables only have access to copies of the application or request contexts any changes made
to these copies will not be reflected in the original view. Further, changes in the original app or request
context that occur after the callable is submitted will not be available to the callable.

Parameters

• fn – The callable to be executed.

• *iterables – An iterable of arguments the callable will apply to.

• **kwargs – A dict of named parameters to pass to the underlying executor’s map()
method.

submit(fn, *args, **kwargs)
Schedules the callable, fn, to be executed as fn(*args **kwargs) and returns a FutureProxy object, a
Future subclass representing the execution of the callable.

See also concurrent.futures.Executor.submit().

Callables are wrapped a copy of the current application context and the current request context. Code
that depends on information or configuration stored in flask.current_app, flask.request or
flask.g can be run without modification.

Note: Because callables only have access to copies of the application or request contexts any changes made
to these copies will not be reflected in the original view. Further, changes in the original app or request
context that occur after the callable is submitted will not be available to the callable.

Example:

future = executor.submit(pow, 323, 1235)
print(future.result())

Parameters

• fn – The callable to be executed.

• *args – A list of positional parameters used with the callable.

• **kwargs – A dict of named parameters used with the callable.

Return type flask_executor.FutureProxy

submit_stored(future_key, fn, *args, **kwargs)
Submits the callable using Executor.submit() and stores the Future in the executor via a

20 Chapter 7. Decoration

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map
https://flask.palletsprojects.com/en/2.2.x/api/#flask.current_app
https://flask.palletsprojects.com/en/2.2.x/api/#flask.g
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.map
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor.submit
https://flask.palletsprojects.com/en/2.2.x/api/#flask.current_app
https://flask.palletsprojects.com/en/2.2.x/api/#flask.g

Flask-Executor Documentation, Release 0.10.0

FutureCollection object available at Executor.futures. These futures can be retrieved any-
where inside your application and queried for status or popped from the collection. Due to memory con-
cerns, the maximum length of the FutureCollection is limited, and the oldest Futures will be dropped when
the limit is exceeded.

See flask_executor.futures.FutureCollection for more information on how to query fu-
tures in a collection.

Example:

@app.route('/start-task')
def start_task():

executor.submit_stored('calc_power', pow, 323, 1235)
return jsonify({'result':'success'})

@app.route('/get-result')
def get_result():

if not executor.futures.done('calc_power'):
future_status = executor.futures._state('calc_power')
return jsonify({'status': future_status})

future = executor.futures.pop('calc_power')
return jsonify({'status': done, 'result': future.result()})

Parameters

• future_key – Stores the Future for the submitted task inside the executor’s futures
object with the specified key.

• fn – The callable to be executed.

• *args – A list of positional parameters used with the callable.

• **kwargs – A dict of named parameters used with the callable.

Return type concurrent.futures.Future

7.1. flask_executor 21

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future

Flask-Executor Documentation, Release 0.10.0

22 Chapter 7. Decoration

CHAPTER 8

Default Callbacks

concurrent.futures.Future objects can have callbacks attached by using add_done_callback().
Flask-Executor lets you specify default callbacks that will be applied to all new futures created by the executor:

def some_callback(future):
do something with future

executor.add_default_done_callback(some_callback)

Callback will be added to the below task automatically
executor.submit(pow, 323, 1235)

23

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback

Flask-Executor Documentation, Release 0.10.0

24 Chapter 8. Default Callbacks

CHAPTER 9

Propagate Exceptions

Normally any exceptions thrown by background threads or processes will be swallowed unless explicitly checked for.
To instead surface all exceptions thrown by background tasks, Flask-Executor can add a special default callback that
raises any exceptions thrown by tasks submitted to the executor:

app.config['EXECUTOR_PROPAGATE_EXCEPTIONS'] = True

25

Flask-Executor Documentation, Release 0.10.0

26 Chapter 9. Propagate Exceptions

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

27

Flask-Executor Documentation, Release 0.10.0

28 Chapter 10. Indices and tables

Python Module Index

f
flask_executor, 19
flask_executor.executor, 15
flask_executor.futures, 18

29

Flask-Executor Documentation, Release 0.10.0

30 Python Module Index

Index

A
add() (flask_executor.futures.FutureCollection

method), 18
add_default_done_callback()

(flask_executor.Executor method), 19
add_default_done_callback()

(flask_executor.executor.Executor method),
16

add_done_callback()
(flask_executor.futures.FutureProxy method),
19

E
Executor (class in flask_executor), 19
Executor (class in flask_executor.executor), 15
ExecutorJob (class in flask_executor.executor), 18

F
flask_executor (module), 1, 19
flask_executor.executor (module), 15
flask_executor.futures (module), 18
FutureCollection (class in flask_executor.futures),

18
FutureProxy (class in flask_executor.futures), 18

G
get_current_app_context() (in module

flask_executor.executor), 18

I
init_app() (flask_executor.Executor method), 19
init_app() (flask_executor.executor.Executor

method), 16

J
job() (flask_executor.Executor method), 19
job() (flask_executor.executor.Executor method), 16

M
map() (flask_executor.Executor method), 20

map() (flask_executor.executor.Executor method), 16
map() (flask_executor.executor.ExecutorJob method), 18

P
pop() (flask_executor.futures.FutureCollection

method), 18
propagate_exceptions_callback() (in mod-

ule flask_executor.executor), 18
push_app_context() (in module

flask_executor.executor), 18

S
submit() (flask_executor.Executor method), 20
submit() (flask_executor.executor.Executor method),

16
submit() (flask_executor.executor.ExecutorJob

method), 18
submit_stored() (flask_executor.Executor method),

20
submit_stored() (flask_executor.executor.Executor

method), 17
submit_stored() (flask_executor.executor.ExecutorJob

method), 18

31

	Installation
	Setup
	Configuration
	Basic Usage
	Contexts
	Futures
	Decoration
	flask_executor

	Default Callbacks
	Propagate Exceptions
	Indices and tables
	Python Module Index
	Index

